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We investigate the lateral shift of a TM-polarized light beam reflected from Otto configuration under
grazing incidence. It is found that the lateral shift is strongly dependent on the thickness of the air-gap
layer. By employing the pole-null representation, we demonstrate that the lateral shift is closely related
to the null of the reflection function. The numerical simulations for a Gaussian beam are performed to
demonstrate the validity of our theoretical analysis.
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It is well known that a totally reflected beam experiences
a lateral shift, which is referred to as Goos-Hänchen (GH)
effect[1] from the position predicted by the geometrical
optics, because each of its plane wave components under-
goes a different phase shift[2]. Since the investigations
of the GH shift were extended to the lossy multilayered
structures, the pole-null representation (PNR)[3−6] has
been developed. Shah et al.

[3,4] pointed out that the inci-
dent beam may be minimally reflected in a much broader
class of layered configurations. Near the reflectivity
minima, it is interesting to study the behaviors of the
GH shift in various structures, such as absorbing dielec-
tric structures[3−7], metallic structures[8,9], and waveg-
uide structures[10,11]. Recently, Shkerdin et al.

[12] demon-
strated that the lateral shift can be described by the polls
and the nulls, which are associated with the reflectivity
minima and represent the eigenmodes for a given struc-
ture.

Lukosz et al.
[13] showed that the reflectivity may have

two exact zeros in Otto configuration for two different
angles of incidence and thickness of the central layer. The
first zero reflectivity is due to surface plasmon resonance
(SPR) and the corresponding property of the lateral shift
has been studied in Refs. [8,14]. The second one has been
found in Refs. [13,15] near grazing incidence and with a
small value of the thickness of the interlayer. However,
the features of the lateral shift in the latter case have not
been reported.

The purpose of this paper is to investigate the lateral
shift of the reflected beam near grazing incidence in Otto
configuration. Our calculations show that the magni-
tude and the sign (positive or negative) of the GH shift
are strongly dependent on the thickness of the air-gap
layer. By utilizing the PNR of the reflection function,
we demonstrate that the GH shift is only associated with
the null, because no pole exists in this case.

The geometrical configuration considered here is shown
in Fig. 1. It consists of a prism with the relative di-
electric constant ε1 = 2.34, an air-gap layer with the

thickness d, and a metal such as silver with the relative
dielectric constant ε3 = −5.19 + i0.28 at the wavelength
λ = 435.8 nm[14]. Suppose that a TM-polarized beam
is incident from the prism at an angle θ on the interface
z = 0, the reflection function in this structure can be ob-
tained by solving Maxwell’s equations and the boundary
conditions[16]

r(kx) =
r12 + r23 exp(2ik2zd)

1 + r12r23 exp(2ik2zd)
, (1)

with

rab =
kaz/εa − kbz/εb

kaz/εa + kbz/εb
, (a, b = 1, 2, 3), (2)

where kx = k0
√

ε1 sin θ represents the propagation con-
stant along the interface with k0 = 2π/λ being the wave
vector in vacuum, εa is the relative dielectric permit-
tivity of medium a, kaz = k0(εa − ε1 sin2 θ)1/2 is the
corresponding component of the wave vector normal to
the interface in medium a, and rab represents the Fresnel
reflection coefficient for the interface separating media
a and b.

The reflectivity R versus the incidence angle θ for

Fig. 1. Schematic diagram of a TM-polarized light beam
incident upon Otto configuration at grazing angle, where
ε1 = 2.34, ε2 = 1, ε3 = −5.19+ i0.28. The lateral shift S may
be negative (Ray 1) or positive (Ray 2), the dashed line (Ray
r) is the path predicted by geometric optics. L = S/ cos θ
represents the longitudinal shift along the interface z = 0.
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Fig. 2. Reflectivity R versus the incidence angle θ with
different thicknesses d, where all the other parameters are
the same as Fig. 1.

several thicknesses d is presented in Fig. 2. It is clearly
seen that if the incidence angle θ and the thickness d
satisfy a certain condition, exact zero reflectivity will be
obtained. This condition is determined by the require-
ments of the phase and the amplitude of the numerator
on the right-hand side of Eq. (1), that is,

φ12 + π = φ23, (3)

and

d =
1

2κ
ln

∣

∣

∣

∣

r23

r12

∣

∣

∣

∣

, (4)

where κ = k0(ε1 sin2 θ − ε2)
1/2, φ12 and φ23 respec-

tively represent the phase of r12 and r23. The solutions
of Eq. (3) determine at which angles of incidence the
reflectivity will be zero, if the air-gap layer has the proper
thickness d given by Eq. (4).

The calculated results show that only two angles meet
Eq. (3). The first one θ1 = 46.705◦ is very close to
the SPR angle θSPR = 46.657◦, the corresponding thick-
ness d1 is 292.4 nm, which is well known as the optimal
thickness[17] for the excitations of surface plasmon, and
the reflected beams may undergo large positive or neg-
ative lateral shifts around d1

[8]. In detail, above this
optimal thickness negative lateral shifts are found, while
below it the lateral shifts are positive[9,14]. The second
one θ2 is 87.936◦ and the corresponding thickness d2 is
29.55 nm, meanwhile, the corresponding curve R takes
on a relatively broader minimum.

Here we concentrate on the second case. By utilizing
PNR of the reflection function in the complex wave vec-
tor plane, we will demonstrate that there exists a close
link between the lateral shift and the null which is deter-
mined by the physical parameters of the structure, and
will show that the thickness d also plays an important
role. About how to evaluate the pole kp and the null
kn, one can see Ref. [18]. Because d2 = 29.55 nm is
far more less than the cut-off thickness, the pole kp no

longer exists[15]. The solutions of the null kn for several
thicknesses d are figured out: kn/k0 = 1.52898+i0.00082
for d = 29 nm, kn/k0 = 1.52872 + i0.00007 for d = 29.5
nm, kn/k0 = 1.52871 − i0.00009 for d = 29.6 nm, and
kn/k0 = 1.52877 − i0.00078 for d = 30 nm. It can be
clearly seen that the null crosses the real axis as the thick-
ness d is changed from 29 to 30 nm.

For a given value of the thickness d, we assume that

kn = β + iα, (5)

where β and α are the real and imaginary parts of kn,
respectively. We then use a Taylor expansion to express
the reflection function r(kx) at the null kn:

r(kx) = r(kn) + r(kx)
′|kx=kn

(kx − kn)

+
1

2
r(kx)′′|kx=kn

(kx − kn)2 + · · · , (6)

where r(kn) = 0. Near the reflectivity minima, we may
take into account only the first two terms of Eq. (6), so
that the following expression is found,

r(kx) ≈ r(kx)′|kx=kn
[(kx − β) − iα]. (7)

Thus the phase of r(kx), φr = Im[ln r(kx)] can be ap-
proximated as

φr ≈ C + arctan
−α

kx − β
, (8)

where C is a constant. According to stationary-phase
method[2], the lateral shift of the reflected beam can be
calculated analytically as S = − 1

k0

√
ε1

dφr

dθ . Thus the fol-

lowing expression for the lateral shift S is obtained,

S ≈ −α

(kx − β)2 + α2
cos θ. (9)

Formula (9) describes the approximate relation between
the GH shift S and the null kn and shows that the sign
of GH shift is opposite to the sign of α. Furthermore,
it is interesting to find that the longitudinal shift L ap-
proaches a maximum value at kx = β which can be writ-
ten as

Lmax ≈ − 1

α
. (10)

To demonstrate the validity of the above analysis, we now
consider a two-dimensional (2D) Gaussian beam with
amplitude independent on the y-coordinate (the y-axis
directs out the plane of the paper). The incident mag-
netic field is assumed to be Eq. (11) on the z = 0 plane,

Hin(x, z)|z=0 = exp[−(
x

Wx
)2 + ikx0x], (11)

where Wx = W/ cos θ0, W is the beam width and
θ0 represents the incident angle for the center of the
bounded beam, kx0 = k0

√
ε1 sin θ0. The time depen-

dence exp(−iωt) is implied and suppressed.
Using the plane-wave spectrum of the incident field at

z = 0, the magnetic field has the Fourier integral in the
following form:

Hin(x, 0) =

∫ ∞

−∞
A(kx) exp(ikxx)dkx, (12)

where A(kx) = Wx

2
√

π
exp[−(Wx

2 )2(kx−kx0)
2], the reflected

magnetic field can be written as

Hr(x, z) =

∫ ∞

−∞
r(kx)A(kx) exp(ikxx − ik1zz)dkx, (13)
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where z ≤ 0. The numerically calculated GH shift S is
obtained by performing Eq. (13) at z = 0 and searching
the position x at which |Hr(x, 0)| is maximal[19]. If the
profile of the reflected beam remains closely to the inci-
dent Gaussian profile, then S = x cos θ0.

The numerical results for the GH shifts and the profiles
of the reflected magnetic field are shown in Fig. 3, where
the width W of the incident beam is chosen to be 0.1 mm.
The theoretical results for the GH shifts S depicted in
formula (9) as a function of the incidence angle θ depend-
ing on the thickness d are shown by the solid curves, and
the corresponding numerical results are shown by the
dotted curves. Suppose that the peak of the incident
Gaussian beam depicted in Eq. (11) is unity, the profiles
of the reflected magnetic field on the plane z = 0 under
different conditions are shown in the insets of Fig. 3. It
can be seen from Fig. 3 that the theoretical results coin-
cide well with the numerical results. When the thickness
d is above 29.55 nm, positive lateral shifts can be ob-
tained, while below it the lateral shifts are negative.
These results are good agreement with formula (9). Fig-
ure 3 also shows that the lateral shift is a peak when the
incidence angle θ nears 87.936◦, which also fits well with
the requirement of formula (9). Although the intensities
of the reflected magnetic field are relatively weak, calcu-
lation results show that the profiles of the reflected beam
remain substantially Gaussian. Note that, if the intensity

Fig. 3. Dependence of the GH shifts S on the angle of inci-
dence θ for several values of the thickness d, and all the other
parameters are the same as Fig. 1, where the solid curves rep-
resent the theoretical results, the dotted curves represent the
corresponding numerical results for W = 0.1 mm. The inset
(a) shows the profile of the reflected magnetic field on the
plane z = 0 when θ0 = 87.94◦ and d = 29.55 nm, the inset
(b) corresponds to θ0 = 87.93◦ and d = 29.56 nm.

of the reflected beam can be availably detected, the lat-
eral shifts S can be also photodetected by a position-
sensitive detector[9,11,20].
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